Metamath Proof Explorer
Description: Double application of rspcedvdw . (Contributed by SN, 24-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
2rspcedvdw.1 |
|
|
|
2rspcedvdw.2 |
|
|
|
2rspcedvdw.a |
|
|
|
2rspcedvdw.b |
|
|
|
2rspcedvdw.3 |
|
|
Assertion |
2rspcedvdw |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2rspcedvdw.1 |
|
| 2 |
|
2rspcedvdw.2 |
|
| 3 |
|
2rspcedvdw.a |
|
| 4 |
|
2rspcedvdw.b |
|
| 5 |
|
2rspcedvdw.3 |
|
| 6 |
1 2
|
rspc2ev |
|
| 7 |
3 4 5 6
|
syl3anc |
|