Metamath Proof Explorer
Description: Double application of rspcedvdw . (Contributed by SN, 24-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
2rspcedvdw.1 |
|
|
|
2rspcedvdw.2 |
|
|
|
2rspcedvdw.a |
|
|
|
2rspcedvdw.b |
|
|
|
2rspcedvdw.3 |
|
|
Assertion |
2rspcedvdw |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2rspcedvdw.1 |
|
2 |
|
2rspcedvdw.2 |
|
3 |
|
2rspcedvdw.a |
|
4 |
|
2rspcedvdw.b |
|
5 |
|
2rspcedvdw.3 |
|
6 |
1 2
|
rspc2ev |
|
7 |
3 4 5 6
|
syl3anc |
|