Description: Double application of rspcedvdw . (Contributed by SN, 24-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2rspcedvdw.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
2rspcedvdw.2 | |- ( y = B -> ( ch <-> th ) ) |
||
2rspcedvdw.a | |- ( ph -> A e. X ) |
||
2rspcedvdw.b | |- ( ph -> B e. Y ) |
||
2rspcedvdw.3 | |- ( ph -> th ) |
||
Assertion | 2rspcedvdw | |- ( ph -> E. x e. X E. y e. Y ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rspcedvdw.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
2 | 2rspcedvdw.2 | |- ( y = B -> ( ch <-> th ) ) |
|
3 | 2rspcedvdw.a | |- ( ph -> A e. X ) |
|
4 | 2rspcedvdw.b | |- ( ph -> B e. Y ) |
|
5 | 2rspcedvdw.3 | |- ( ph -> th ) |
|
6 | 1 2 | rspc2ev | |- ( ( A e. X /\ B e. Y /\ th ) -> E. x e. X E. y e. Y ps ) |
7 | 3 4 5 6 | syl3anc | |- ( ph -> E. x e. X E. y e. Y ps ) |