Metamath Proof Explorer


Theorem 2rspcedvdw

Description: Double application of rspcedvdw . (Contributed by SN, 24-Aug-2024)

Ref Expression
Hypotheses 2rspcedvdw.1 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
2rspcedvdw.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
2rspcedvdw.a ( 𝜑𝐴𝑋 )
2rspcedvdw.b ( 𝜑𝐵𝑌 )
2rspcedvdw.3 ( 𝜑𝜃 )
Assertion 2rspcedvdw ( 𝜑 → ∃ 𝑥𝑋𝑦𝑌 𝜓 )

Proof

Step Hyp Ref Expression
1 2rspcedvdw.1 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
2 2rspcedvdw.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
3 2rspcedvdw.a ( 𝜑𝐴𝑋 )
4 2rspcedvdw.b ( 𝜑𝐵𝑌 )
5 2rspcedvdw.3 ( 𝜑𝜃 )
6 1 2 rspc2ev ( ( 𝐴𝑋𝐵𝑌𝜃 ) → ∃ 𝑥𝑋𝑦𝑌 𝜓 )
7 3 4 5 6 syl3anc ( 𝜑 → ∃ 𝑥𝑋𝑦𝑌 𝜓 )