Metamath Proof Explorer


Theorem rspc2ev

Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999)

Ref Expression
Hypotheses rspc2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc2v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
Assertion rspc2ev ( ( 𝐴𝐶𝐵𝐷𝜓 ) → ∃ 𝑥𝐶𝑦𝐷 𝜑 )

Proof

Step Hyp Ref Expression
1 rspc2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc2v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
3 2 rspcev ( ( 𝐵𝐷𝜓 ) → ∃ 𝑦𝐷 𝜒 )
4 3 anim2i ( ( 𝐴𝐶 ∧ ( 𝐵𝐷𝜓 ) ) → ( 𝐴𝐶 ∧ ∃ 𝑦𝐷 𝜒 ) )
5 4 3impb ( ( 𝐴𝐶𝐵𝐷𝜓 ) → ( 𝐴𝐶 ∧ ∃ 𝑦𝐷 𝜒 ) )
6 1 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦𝐷 𝜑 ↔ ∃ 𝑦𝐷 𝜒 ) )
7 6 rspcev ( ( 𝐴𝐶 ∧ ∃ 𝑦𝐷 𝜒 ) → ∃ 𝑥𝐶𝑦𝐷 𝜑 )
8 5 7 syl ( ( 𝐴𝐶𝐵𝐷𝜓 ) → ∃ 𝑥𝐶𝑦𝐷 𝜑 )