Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspc2v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
rspc2v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | ||
Assertion | rspc2ev | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) | |
2 | rspc2v.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) | |
3 | 2 | rspcev | ⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝜓 ) → ∃ 𝑦 ∈ 𝐷 𝜒 ) |
4 | 3 | anim2i | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ( 𝐵 ∈ 𝐷 ∧ 𝜓 ) ) → ( 𝐴 ∈ 𝐶 ∧ ∃ 𝑦 ∈ 𝐷 𝜒 ) ) |
5 | 4 | 3impb | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓 ) → ( 𝐴 ∈ 𝐶 ∧ ∃ 𝑦 ∈ 𝐷 𝜒 ) ) |
6 | 1 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝐷 𝜑 ↔ ∃ 𝑦 ∈ 𝐷 𝜒 ) ) |
7 | 6 | rspcev | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ∃ 𝑦 ∈ 𝐷 𝜒 ) → ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝜑 ) |
8 | 5 7 | syl | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐶 ∃ 𝑦 ∈ 𝐷 𝜑 ) |