Step |
Hyp |
Ref |
Expression |
1 |
|
rspc3v.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
rspc3v.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜃 ) ) |
3 |
|
rspc3v.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜃 ↔ 𝜓 ) ) |
4 |
1
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ 𝑇 𝜑 ↔ ∀ 𝑧 ∈ 𝑇 𝜒 ) ) |
5 |
2
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∈ 𝑇 𝜒 ↔ ∀ 𝑧 ∈ 𝑇 𝜃 ) ) |
6 |
4 5
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → ∀ 𝑧 ∈ 𝑇 𝜃 ) ) |
7 |
3
|
rspcv |
⊢ ( 𝐶 ∈ 𝑇 → ( ∀ 𝑧 ∈ 𝑇 𝜃 → 𝜓 ) ) |
8 |
6 7
|
sylan9 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → 𝜓 ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑇 𝜑 → 𝜓 ) ) |