Metamath Proof Explorer


Theorem rspc3v

Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005)

Ref Expression
Hypotheses rspc3v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc3v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
rspc3v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜓 ) )
Assertion rspc3v ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc3v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc3v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜃 ) )
3 rspc3v.3 ( 𝑧 = 𝐶 → ( 𝜃𝜓 ) )
4 1 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑧𝑇 𝜑 ↔ ∀ 𝑧𝑇 𝜒 ) )
5 2 ralbidv ( 𝑦 = 𝐵 → ( ∀ 𝑧𝑇 𝜒 ↔ ∀ 𝑧𝑇 𝜃 ) )
6 4 5 rspc2v ( ( 𝐴𝑅𝐵𝑆 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 → ∀ 𝑧𝑇 𝜃 ) )
7 3 rspcv ( 𝐶𝑇 → ( ∀ 𝑧𝑇 𝜃𝜓 ) )
8 6 7 sylan9 ( ( ( 𝐴𝑅𝐵𝑆 ) ∧ 𝐶𝑇 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓 ) )
9 8 3impa ( ( 𝐴𝑅𝐵𝑆𝐶𝑇 ) → ( ∀ 𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓 ) )