Metamath Proof Explorer


Theorem rspc3v

Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005)

Ref Expression
Hypotheses rspc3v.1 x = A φ χ
rspc3v.2 y = B χ θ
rspc3v.3 z = C θ ψ
Assertion rspc3v A R B S C T x R y S z T φ ψ

Proof

Step Hyp Ref Expression
1 rspc3v.1 x = A φ χ
2 rspc3v.2 y = B χ θ
3 rspc3v.3 z = C θ ψ
4 1 ralbidv x = A z T φ z T χ
5 2 ralbidv y = B z T χ z T θ
6 4 5 rspc2v A R B S x R y S z T φ z T θ
7 3 rspcv C T z T θ ψ
8 6 7 sylan9 A R B S C T x R y S z T φ ψ
9 8 3impa A R B S C T x R y S z T φ ψ