Metamath Proof Explorer


Theorem rspc2v

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999)

Ref Expression
Hypotheses rspc2v.1 x=Aφχ
rspc2v.2 y=Bχψ
Assertion rspc2v ACBDxCyDφψ

Proof

Step Hyp Ref Expression
1 rspc2v.1 x=Aφχ
2 rspc2v.2 y=Bχψ
3 1 ralbidv x=AyDφyDχ
4 3 rspcv ACxCyDφyDχ
5 2 rspcv BDyDχψ
6 4 5 sylan9 ACBDxCyDφψ