Metamath Proof Explorer


Theorem rspc2v

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999)

Ref Expression
Hypotheses rspc2v.1 x = A φ χ
rspc2v.2 y = B χ ψ
Assertion rspc2v A C B D x C y D φ ψ

Proof

Step Hyp Ref Expression
1 rspc2v.1 x = A φ χ
2 rspc2v.2 y = B χ ψ
3 1 ralbidv x = A y D φ y D χ
4 3 rspcv A C x C y D φ y D χ
5 2 rspcv B D y D χ ψ
6 4 5 sylan9 A C B D x C y D φ ψ