Metamath Proof Explorer


Theorem rspc2v

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999)

Ref Expression
Hypotheses rspc2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
rspc2v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
Assertion rspc2v ( ( 𝐴𝐶𝐵𝐷 ) → ( ∀ 𝑥𝐶𝑦𝐷 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc2v.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 rspc2v.2 ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
3 1 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐷 𝜑 ↔ ∀ 𝑦𝐷 𝜒 ) )
4 3 rspcv ( 𝐴𝐶 → ( ∀ 𝑥𝐶𝑦𝐷 𝜑 → ∀ 𝑦𝐷 𝜒 ) )
5 2 rspcv ( 𝐵𝐷 → ( ∀ 𝑦𝐷 𝜒𝜓 ) )
6 4 5 sylan9 ( ( 𝐴𝐶𝐵𝐷 ) → ( ∀ 𝑥𝐶𝑦𝐷 𝜑𝜓 ) )