Metamath Proof Explorer


Theorem rspcv

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998) Drop ax-10 , ax-11 , ax-12 . (Revised by SN, 12-Dec-2023)

Ref Expression
Hypothesis rspcv.1 x = A φ ψ
Assertion rspcv A B x B φ ψ

Proof

Step Hyp Ref Expression
1 rspcv.1 x = A φ ψ
2 id A B A B
3 1 adantl A B x = A φ ψ
4 2 3 rspcdv A B x B φ ψ