Metamath Proof Explorer


Theorem rspcv

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998) Drop ax-10 , ax-11 , ax-12 . (Revised by SN, 12-Dec-2023)

Ref Expression
Hypothesis rspcv.1 x=Aφψ
Assertion rspcv ABxBφψ

Proof

Step Hyp Ref Expression
1 rspcv.1 x=Aφψ
2 id ABAB
3 1 adantl ABx=Aφψ
4 2 3 rspcdv ABxBφψ