Metamath Proof Explorer


Theorem rspccv

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006)

Ref Expression
Hypothesis rspcv.1 x=Aφψ
Assertion rspccv xBφABψ

Proof

Step Hyp Ref Expression
1 rspcv.1 x=Aφψ
2 1 rspcv ABxBφψ
3 2 com12 xBφABψ