Metamath Proof Explorer


Theorem rspcva

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005)

Ref Expression
Hypothesis rspcv.1 x=Aφψ
Assertion rspcva ABxBφψ

Proof

Step Hyp Ref Expression
1 rspcv.1 x=Aφψ
2 1 rspcv ABxBφψ
3 2 imp ABxBφψ