Metamath Proof Explorer


Theorem rspcva

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005)

Ref Expression
Hypothesis rspcv.1
|- ( x = A -> ( ph <-> ps ) )
Assertion rspcva
|- ( ( A e. B /\ A. x e. B ph ) -> ps )

Proof

Step Hyp Ref Expression
1 rspcv.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 rspcv
 |-  ( A e. B -> ( A. x e. B ph -> ps ) )
3 2 imp
 |-  ( ( A e. B /\ A. x e. B ph ) -> ps )