Metamath Proof Explorer


Theorem rspccva

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypothesis rspcv.1
|- ( x = A -> ( ph <-> ps ) )
Assertion rspccva
|- ( ( A. x e. B ph /\ A e. B ) -> ps )

Proof

Step Hyp Ref Expression
1 rspcv.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 rspcv
 |-  ( A e. B -> ( A. x e. B ph -> ps ) )
3 2 impcom
 |-  ( ( A. x e. B ph /\ A e. B ) -> ps )