Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006) (Proof shortened by Andrew Salmon, 8-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rspcv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
Assertion | rspccva | |- ( ( A. x e. B ph /\ A e. B ) -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | 1 | rspcv | |- ( A e. B -> ( A. x e. B ph -> ps ) ) |
3 | 2 | impcom | |- ( ( A. x e. B ph /\ A e. B ) -> ps ) |