Metamath Proof Explorer


Theorem rspcva

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005)

Ref Expression
Hypothesis rspcv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rspcva ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝜑 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 rspcv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 1 rspcv ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝜑𝜓 ) )
3 2 imp ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐵 𝜑 ) → 𝜓 )