Metamath Proof Explorer


Theorem rspcev

Description: Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998) Drop ax-10 , ax-11 , ax-12 . (Revised by SN, 12-Dec-2023)

Ref Expression
Hypothesis rspcv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion rspcev ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 rspcv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 id ( 𝐴𝐵𝐴𝐵 )
3 1 adantl ( ( 𝐴𝐵𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
4 2 3 rspcedv ( 𝐴𝐵 → ( 𝜓 → ∃ 𝑥𝐵 𝜑 ) )
5 4 imp ( ( 𝐴𝐵𝜓 ) → ∃ 𝑥𝐵 𝜑 )