Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
(Contributed by NM, 26-May-1998) Drop ax-10 , ax-11 , ax-12 .
(Revised by SN, 12-Dec-2023)
|
|
Ref |
Expression |
|
Hypothesis |
rspcv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
rspcev |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rspcv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
id |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐵 ) |
3 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
2 3
|
rspcedv |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝜓 → ∃ 𝑥 ∈ 𝐵 𝜑 ) ) |
5 |
4
|
imp |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐵 𝜑 ) |