Metamath Proof Explorer


Theorem rspc2ev

Description: 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999)

Ref Expression
Hypotheses rspc2v.1
|- ( x = A -> ( ph <-> ch ) )
rspc2v.2
|- ( y = B -> ( ch <-> ps ) )
Assertion rspc2ev
|- ( ( A e. C /\ B e. D /\ ps ) -> E. x e. C E. y e. D ph )

Proof

Step Hyp Ref Expression
1 rspc2v.1
 |-  ( x = A -> ( ph <-> ch ) )
2 rspc2v.2
 |-  ( y = B -> ( ch <-> ps ) )
3 2 rspcev
 |-  ( ( B e. D /\ ps ) -> E. y e. D ch )
4 3 anim2i
 |-  ( ( A e. C /\ ( B e. D /\ ps ) ) -> ( A e. C /\ E. y e. D ch ) )
5 4 3impb
 |-  ( ( A e. C /\ B e. D /\ ps ) -> ( A e. C /\ E. y e. D ch ) )
6 1 rexbidv
 |-  ( x = A -> ( E. y e. D ph <-> E. y e. D ch ) )
7 6 rspcev
 |-  ( ( A e. C /\ E. y e. D ch ) -> E. x e. C E. y e. D ph )
8 5 7 syl
 |-  ( ( A e. C /\ B e. D /\ ps ) -> E. x e. C E. y e. D ph )