Metamath Proof Explorer


Theorem rspcedvdw

Description: Version of rspcedvd where the implicit substitution hypothesis does not have an antecedent, which also avoids a disjoint variable condition on ph , x . (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses rspcedvdw.s
|- ( x = A -> ( ps <-> ch ) )
rspcedvdw.1
|- ( ph -> A e. B )
rspcedvdw.2
|- ( ph -> ch )
Assertion rspcedvdw
|- ( ph -> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 rspcedvdw.s
 |-  ( x = A -> ( ps <-> ch ) )
2 rspcedvdw.1
 |-  ( ph -> A e. B )
3 rspcedvdw.2
 |-  ( ph -> ch )
4 1 rspcev
 |-  ( ( A e. B /\ ch ) -> E. x e. B ps )
5 2 3 4 syl2anc
 |-  ( ph -> E. x e. B ps )