Metamath Proof Explorer
Description: Triple application of rspcedvdw . (Contributed by SN, 20-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
3rspcedvdw.1 |
|
|
|
3rspcedvdw.2 |
|
|
|
3rspcedvdw.3 |
|
|
|
3rspcedvdw.a |
|
|
|
3rspcedvdw.b |
|
|
|
3rspcedvdw.c |
|
|
|
3rspcedvdw.4 |
|
|
Assertion |
3rspcedvdw |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3rspcedvdw.1 |
|
| 2 |
|
3rspcedvdw.2 |
|
| 3 |
|
3rspcedvdw.3 |
|
| 4 |
|
3rspcedvdw.a |
|
| 5 |
|
3rspcedvdw.b |
|
| 6 |
|
3rspcedvdw.c |
|
| 7 |
|
3rspcedvdw.4 |
|
| 8 |
1 2 3
|
rspc3ev |
|
| 9 |
4 5 6 7 8
|
syl31anc |
|