Metamath Proof Explorer


Theorem 3rspcedvdw

Description: Triple application of rspcedvdw . (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses 3rspcedvdw.1 x = A ψ χ
3rspcedvdw.2 y = B χ θ
3rspcedvdw.3 z = C θ τ
3rspcedvdw.a φ A X
3rspcedvdw.b φ B Y
3rspcedvdw.c φ C Z
3rspcedvdw.4 φ τ
Assertion 3rspcedvdw φ x X y Y z Z ψ

Proof

Step Hyp Ref Expression
1 3rspcedvdw.1 x = A ψ χ
2 3rspcedvdw.2 y = B χ θ
3 3rspcedvdw.3 z = C θ τ
4 3rspcedvdw.a φ A X
5 3rspcedvdw.b φ B Y
6 3rspcedvdw.c φ C Z
7 3rspcedvdw.4 φ τ
8 1 2 3 rspc3ev A X B Y C Z τ x X y Y z Z ψ
9 4 5 6 7 8 syl31anc φ x X y Y z Z ψ