Description: Triple application of rspcedvdw . (Contributed by SN, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3rspcedvdw.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
3rspcedvdw.2 | |- ( y = B -> ( ch <-> th ) ) |
||
3rspcedvdw.3 | |- ( z = C -> ( th <-> ta ) ) |
||
3rspcedvdw.a | |- ( ph -> A e. X ) |
||
3rspcedvdw.b | |- ( ph -> B e. Y ) |
||
3rspcedvdw.c | |- ( ph -> C e. Z ) |
||
3rspcedvdw.4 | |- ( ph -> ta ) |
||
Assertion | 3rspcedvdw | |- ( ph -> E. x e. X E. y e. Y E. z e. Z ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3rspcedvdw.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
2 | 3rspcedvdw.2 | |- ( y = B -> ( ch <-> th ) ) |
|
3 | 3rspcedvdw.3 | |- ( z = C -> ( th <-> ta ) ) |
|
4 | 3rspcedvdw.a | |- ( ph -> A e. X ) |
|
5 | 3rspcedvdw.b | |- ( ph -> B e. Y ) |
|
6 | 3rspcedvdw.c | |- ( ph -> C e. Z ) |
|
7 | 3rspcedvdw.4 | |- ( ph -> ta ) |
|
8 | 1 2 3 | rspc3ev | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ta ) -> E. x e. X E. y e. Y E. z e. Z ps ) |
9 | 4 5 6 7 8 | syl31anc | |- ( ph -> E. x e. X E. y e. Y E. z e. Z ps ) |