Metamath Proof Explorer


Theorem 3rspcedvdw

Description: Triple application of rspcedvdw . (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses 3rspcedvdw.1
|- ( x = A -> ( ps <-> ch ) )
3rspcedvdw.2
|- ( y = B -> ( ch <-> th ) )
3rspcedvdw.3
|- ( z = C -> ( th <-> ta ) )
3rspcedvdw.a
|- ( ph -> A e. X )
3rspcedvdw.b
|- ( ph -> B e. Y )
3rspcedvdw.c
|- ( ph -> C e. Z )
3rspcedvdw.4
|- ( ph -> ta )
Assertion 3rspcedvdw
|- ( ph -> E. x e. X E. y e. Y E. z e. Z ps )

Proof

Step Hyp Ref Expression
1 3rspcedvdw.1
 |-  ( x = A -> ( ps <-> ch ) )
2 3rspcedvdw.2
 |-  ( y = B -> ( ch <-> th ) )
3 3rspcedvdw.3
 |-  ( z = C -> ( th <-> ta ) )
4 3rspcedvdw.a
 |-  ( ph -> A e. X )
5 3rspcedvdw.b
 |-  ( ph -> B e. Y )
6 3rspcedvdw.c
 |-  ( ph -> C e. Z )
7 3rspcedvdw.4
 |-  ( ph -> ta )
8 1 2 3 rspc3ev
 |-  ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ ta ) -> E. x e. X E. y e. Y E. z e. Z ps )
9 4 5 6 7 8 syl31anc
 |-  ( ph -> E. x e. X E. y e. Y E. z e. Z ps )