Description: Triple application of rspcedvd . (Contributed by Steven Nguyen, 27-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3rspcedvd.a | |- ( ph -> A e. D ) |
|
3rspcedvd.b | |- ( ph -> B e. D ) |
||
3rspcedvd.c | |- ( ph -> C e. D ) |
||
3rspcedvd.1 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
3rspcedvd.2 | |- ( ( ph /\ y = B ) -> ( ch <-> th ) ) |
||
3rspcedvd.3 | |- ( ( ph /\ z = C ) -> ( th <-> ta ) ) |
||
3rspcedvd.4 | |- ( ph -> ta ) |
||
Assertion | 3rspcedvd | |- ( ph -> E. x e. D E. y e. D E. z e. D ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3rspcedvd.a | |- ( ph -> A e. D ) |
|
2 | 3rspcedvd.b | |- ( ph -> B e. D ) |
|
3 | 3rspcedvd.c | |- ( ph -> C e. D ) |
|
4 | 3rspcedvd.1 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
5 | 3rspcedvd.2 | |- ( ( ph /\ y = B ) -> ( ch <-> th ) ) |
|
6 | 3rspcedvd.3 | |- ( ( ph /\ z = C ) -> ( th <-> ta ) ) |
|
7 | 3rspcedvd.4 | |- ( ph -> ta ) |
|
8 | 4 | 2rexbidv | |- ( ( ph /\ x = A ) -> ( E. y e. D E. z e. D ps <-> E. y e. D E. z e. D ch ) ) |
9 | 5 | rexbidv | |- ( ( ph /\ y = B ) -> ( E. z e. D ch <-> E. z e. D th ) ) |
10 | 3 6 7 | rspcedvd | |- ( ph -> E. z e. D th ) |
11 | 2 9 10 | rspcedvd | |- ( ph -> E. y e. D E. z e. D ch ) |
12 | 1 8 11 | rspcedvd | |- ( ph -> E. x e. D E. y e. D E. z e. D ps ) |