| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3rspcedvd.a |
|- ( ph -> A e. D ) |
| 2 |
|
3rspcedvd.b |
|- ( ph -> B e. D ) |
| 3 |
|
3rspcedvd.c |
|- ( ph -> C e. D ) |
| 4 |
|
3rspcedvd.1 |
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
| 5 |
|
3rspcedvd.2 |
|- ( ( ph /\ y = B ) -> ( ch <-> th ) ) |
| 6 |
|
3rspcedvd.3 |
|- ( ( ph /\ z = C ) -> ( th <-> ta ) ) |
| 7 |
|
3rspcedvd.4 |
|- ( ph -> ta ) |
| 8 |
4
|
2rexbidv |
|- ( ( ph /\ x = A ) -> ( E. y e. D E. z e. D ps <-> E. y e. D E. z e. D ch ) ) |
| 9 |
5
|
rexbidv |
|- ( ( ph /\ y = B ) -> ( E. z e. D ch <-> E. z e. D th ) ) |
| 10 |
3 6 7
|
rspcedvd |
|- ( ph -> E. z e. D th ) |
| 11 |
2 9 10
|
rspcedvd |
|- ( ph -> E. y e. D E. z e. D ch ) |
| 12 |
1 8 11
|
rspcedvd |
|- ( ph -> E. x e. D E. y e. D E. z e. D ps ) |