Metamath Proof Explorer


Theorem rspc3ev

Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses rspc3v.1
|- ( x = A -> ( ph <-> ch ) )
rspc3v.2
|- ( y = B -> ( ch <-> th ) )
rspc3v.3
|- ( z = C -> ( th <-> ps ) )
Assertion rspc3ev
|- ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> E. x e. R E. y e. S E. z e. T ph )

Proof

Step Hyp Ref Expression
1 rspc3v.1
 |-  ( x = A -> ( ph <-> ch ) )
2 rspc3v.2
 |-  ( y = B -> ( ch <-> th ) )
3 rspc3v.3
 |-  ( z = C -> ( th <-> ps ) )
4 simpl1
 |-  ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> A e. R )
5 simpl2
 |-  ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> B e. S )
6 3 rspcev
 |-  ( ( C e. T /\ ps ) -> E. z e. T th )
7 6 3ad2antl3
 |-  ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> E. z e. T th )
8 1 rexbidv
 |-  ( x = A -> ( E. z e. T ph <-> E. z e. T ch ) )
9 2 rexbidv
 |-  ( y = B -> ( E. z e. T ch <-> E. z e. T th ) )
10 8 9 rspc2ev
 |-  ( ( A e. R /\ B e. S /\ E. z e. T th ) -> E. x e. R E. y e. S E. z e. T ph )
11 4 5 7 10 syl3anc
 |-  ( ( ( A e. R /\ B e. S /\ C e. T ) /\ ps ) -> E. x e. R E. y e. S E. z e. T ph )