Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rspceeqv.1 | |- ( x = A -> C = D ) |
|
Assertion | rspceeqv | |- ( ( A e. B /\ E = D ) -> E. x e. B E = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceeqv.1 | |- ( x = A -> C = D ) |
|
2 | 1 | eqeq2d | |- ( x = A -> ( E = C <-> E = D ) ) |
3 | 2 | rspcev | |- ( ( A e. B /\ E = D ) -> E. x e. B E = C ) |