Metamath Proof Explorer


Theorem simpl2

Description: Simplification of conjunction. (Contributed by Jeff Hankins, 17-Nov-2009) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpl2
|- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ps )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ps /\ th ) -> ps )
2 1 3ad2antl2
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) -> ps )