Metamath Proof Explorer


Theorem simpl2

Description: Simplification of conjunction. (Contributed by Jeff Hankins, 17-Nov-2009) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpl2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜓𝜃 ) → 𝜓 )
2 1 3ad2antl2 ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → 𝜓 )