Metamath Proof Explorer


Theorem genpdm

Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
Assertion genpdm domF=𝑷×𝑷

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 elprnq w𝑷ywy𝑸
4 elprnq v𝑷zvz𝑸
5 eleq1 x=yGzx𝑸yGz𝑸
6 2 5 syl5ibrcom y𝑸z𝑸x=yGzx𝑸
7 3 4 6 syl2an w𝑷ywv𝑷zvx=yGzx𝑸
8 7 an4s w𝑷v𝑷ywzvx=yGzx𝑸
9 8 rexlimdvva w𝑷v𝑷ywzvx=yGzx𝑸
10 9 abssdv w𝑷v𝑷x|ywzvx=yGz𝑸
11 nqex 𝑸V
12 ssexg x|ywzvx=yGz𝑸𝑸Vx|ywzvx=yGzV
13 10 11 12 sylancl w𝑷v𝑷x|ywzvx=yGzV
14 13 rgen2 w𝑷v𝑷x|ywzvx=yGzV
15 1 fnmpo w𝑷v𝑷x|ywzvx=yGzVFFn𝑷×𝑷
16 fndm FFn𝑷×𝑷domF=𝑷×𝑷
17 14 15 16 mp2b domF=𝑷×𝑷