Metamath Proof Explorer


Theorem genpdm

Description: Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
Assertion genpdm dom 𝐹 = ( P × P )

Proof

Step Hyp Ref Expression
1 genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
2 genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
3 elprnq ( ( 𝑤P𝑦𝑤 ) → 𝑦Q )
4 elprnq ( ( 𝑣P𝑧𝑣 ) → 𝑧Q )
5 eleq1 ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥Q ↔ ( 𝑦 𝐺 𝑧 ) ∈ Q ) )
6 2 5 syl5ibrcom ( ( 𝑦Q𝑧Q ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥Q ) )
7 3 4 6 syl2an ( ( ( 𝑤P𝑦𝑤 ) ∧ ( 𝑣P𝑧𝑣 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥Q ) )
8 7 an4s ( ( ( 𝑤P𝑣P ) ∧ ( 𝑦𝑤𝑧𝑣 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥Q ) )
9 8 rexlimdvva ( ( 𝑤P𝑣P ) → ( ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥Q ) )
10 9 abssdv ( ( 𝑤P𝑣P ) → { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q )
11 nqex Q ∈ V
12 ssexg ( ( { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ QQ ∈ V ) → { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V )
13 10 11 12 sylancl ( ( 𝑤P𝑣P ) → { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V )
14 13 rgen2 𝑤P𝑣P { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V
15 1 fnmpo ( ∀ 𝑤P𝑣P { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V → 𝐹 Fn ( P × P ) )
16 fndm ( 𝐹 Fn ( P × P ) → dom 𝐹 = ( P × P ) )
17 14 15 16 mp2b dom 𝐹 = ( P × P )