Description: The subset of a set is also a set. Exercise 3 of TakeutiZaring p. 22 (generalized). (Contributed by NM, 14-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐵 ) ) | |
2 | 1 | imbi1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ⊆ 𝑥 → 𝐴 ∈ V ) ↔ ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) ) ) |
3 | vex | ⊢ 𝑥 ∈ V | |
4 | 3 | ssex | ⊢ ( 𝐴 ⊆ 𝑥 → 𝐴 ∈ V ) |
5 | 2 4 | vtoclg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ∈ V ) ) |
6 | 5 | impcom | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) |