Metamath Proof Explorer


Theorem ssexg

Description: The subset of a set is also a set. Exercise 3 of TakeutiZaring p. 22 (generalized). (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion ssexg ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 sseq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
2 1 imbi1d ( 𝑥 = 𝐵 → ( ( 𝐴𝑥𝐴 ∈ V ) ↔ ( 𝐴𝐵𝐴 ∈ V ) ) )
3 vex 𝑥 ∈ V
4 3 ssex ( 𝐴𝑥𝐴 ∈ V )
5 2 4 vtoclg ( 𝐵𝐶 → ( 𝐴𝐵𝐴 ∈ V ) )
6 5 impcom ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴 ∈ V )