Metamath Proof Explorer


Theorem rexlimdvva

Description: Inference from Theorem 19.23 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis rexlimdvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion rexlimdvva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexlimdvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
2 1 ex ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜓𝜒 ) ) )
3 2 rexlimdvv ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵 𝜓𝜒 ) )