Metamath Proof Explorer


Theorem rexlimdvva

Description: Inference from Theorem 19.23 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypothesis rexlimdvva.1
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) )
Assertion rexlimdvva
|- ( ph -> ( E. x e. A E. y e. B ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdvva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps -> ch ) )
2 1 ex
 |-  ( ph -> ( ( x e. A /\ y e. B ) -> ( ps -> ch ) ) )
3 2 rexlimdvv
 |-  ( ph -> ( E. x e. A E. y e. B ps -> ch ) )