Metamath Proof Explorer


Theorem rexlimdvv

Description: Inference from Theorem 19.23 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004)

Ref Expression
Hypothesis rexlimdvv.1
|- ( ph -> ( ( x e. A /\ y e. B ) -> ( ps -> ch ) ) )
Assertion rexlimdvv
|- ( ph -> ( E. x e. A E. y e. B ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdvv.1
 |-  ( ph -> ( ( x e. A /\ y e. B ) -> ( ps -> ch ) ) )
2 1 expdimp
 |-  ( ( ph /\ x e. A ) -> ( y e. B -> ( ps -> ch ) ) )
3 2 rexlimdv
 |-  ( ( ph /\ x e. A ) -> ( E. y e. B ps -> ch ) )
4 3 rexlimdva
 |-  ( ph -> ( E. x e. A E. y e. B ps -> ch ) )