Metamath Proof Explorer


Theorem rexlimdv

Description: Inference from Theorem 19.23 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002) (Proof shortened by Eric Schmidt, 22-Dec-2006) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)

Ref Expression
Hypothesis rexlimdv.1
|- ( ph -> ( x e. A -> ( ps -> ch ) ) )
Assertion rexlimdv
|- ( ph -> ( E. x e. A ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rexlimdv.1
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
2 1 com3l
 |-  ( x e. A -> ( ps -> ( ph -> ch ) ) )
3 2 rexlimiv
 |-  ( E. x e. A ps -> ( ph -> ch ) )
4 3 com12
 |-  ( ph -> ( E. x e. A ps -> ch ) )