Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008) (Proof shortened by Wolf Lammen, 28-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralrimdva.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
Assertion | ralrimdva | |- ( ph -> ( ps -> A. x e. A ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdva.1 | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
|
2 | 1 | expimpd | |- ( ph -> ( ( x e. A /\ ps ) -> ch ) ) |
3 | 2 | expcomd | |- ( ph -> ( ps -> ( x e. A -> ch ) ) ) |
4 | 3 | ralrimdv | |- ( ph -> ( ps -> A. x e. A ch ) ) |