Metamath Proof Explorer


Theorem expcomd

Description: Deduction form of expcom . (Contributed by Alan Sare, 22-Jul-2012)

Ref Expression
Hypothesis expcomd.1
|- ( ph -> ( ( ps /\ ch ) -> th ) )
Assertion expcomd
|- ( ph -> ( ch -> ( ps -> th ) ) )

Proof

Step Hyp Ref Expression
1 expcomd.1
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
2 1 expd
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 2 com23
 |-  ( ph -> ( ch -> ( ps -> th ) ) )