Metamath Proof Explorer


Theorem genpn0

Description: The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
genp.2 y𝑸z𝑸yGz𝑸
Assertion genpn0 A𝑷B𝑷AFB

Proof

Step Hyp Ref Expression
1 genp.1 F=w𝑷,v𝑷x|ywzvx=yGz
2 genp.2 y𝑸z𝑸yGz𝑸
3 prn0 A𝑷A
4 n0 AffA
5 3 4 sylib A𝑷ffA
6 prn0 B𝑷B
7 n0 BggB
8 6 7 sylib B𝑷ggB
9 5 8 anim12i A𝑷B𝑷ffAggB
10 1 2 genpprecl A𝑷B𝑷fAgBfGgAFB
11 ne0i fGgAFBAFB
12 0pss AFBAFB
13 11 12 sylibr fGgAFBAFB
14 10 13 syl6 A𝑷B𝑷fAgBAFB
15 14 expcomd A𝑷B𝑷gBfAAFB
16 15 exlimdv A𝑷B𝑷ggBfAAFB
17 16 com23 A𝑷B𝑷fAggBAFB
18 17 exlimdv A𝑷B𝑷ffAggBAFB
19 18 impd A𝑷B𝑷ffAggBAFB
20 9 19 mpd A𝑷B𝑷AFB