Metamath Proof Explorer


Theorem abssdv

Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)

Ref Expression
Hypothesis abssdv.1 φ ψ x A
Assertion abssdv φ x | ψ A

Proof

Step Hyp Ref Expression
1 abssdv.1 φ ψ x A
2 1 alrimiv φ x ψ x A
3 abss x | ψ A x ψ x A
4 2 3 sylibr φ x | ψ A