Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006) (Proof shortened by SN, 22-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abssdv.1 | |- ( ph -> ( ps -> x e. A ) )  | 
					|
| Assertion | abssdv | |- ( ph -> { x | ps } C_ A ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abssdv.1 | |- ( ph -> ( ps -> x e. A ) )  | 
						|
| 2 | 1 | ss2abdv |  |-  ( ph -> { x | ps } C_ { x | x e. A } ) | 
						
| 3 | abid1 |  |-  A = { x | x e. A } | 
						|
| 4 | 2 3 | sseqtrrdi |  |-  ( ph -> { x | ps } C_ A ) |