Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abssi.1 | |- ( ph -> x e. A ) |
|
Assertion | abssi | |- { x | ph } C_ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | |- ( ph -> x e. A ) |
|
2 | 1 | ss2abi | |- { x | ph } C_ { x | x e. A } |
3 | abid2 | |- { x | x e. A } = A |
|
4 | 2 3 | sseqtri | |- { x | ph } C_ A |