Metamath Proof Explorer


Theorem abssi

Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006)

Ref Expression
Hypothesis abssi.1 φxA
Assertion abssi x|φA

Proof

Step Hyp Ref Expression
1 abssi.1 φxA
2 1 ss2abi x|φx|xA
3 abid2 x|xA=A
4 2 3 sseqtri x|φA