Metamath Proof Explorer


Theorem sseqtri

Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995)

Ref Expression
Hypotheses sseqtr.1 AB
sseqtr.2 B=C
Assertion sseqtri AC

Proof

Step Hyp Ref Expression
1 sseqtr.1 AB
2 sseqtr.2 B=C
3 2 sseq2i ABAC
4 1 3 mpbi AC