Metamath Proof Explorer


Theorem ss2abdv

Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Hypothesis ss2abdv.1 φψχ
Assertion ss2abdv φx|ψx|χ

Proof

Step Hyp Ref Expression
1 ss2abdv.1 φψχ
2 df-in x|ψx|χ=y|yx|ψyx|χ
3 df-clab yx|ψyxψ
4 3 bicomi yxψyx|ψ
5 df-clab yx|χyxχ
6 5 bicomi yxχyx|χ
7 4 6 anbi12i yxψyxχyx|ψyx|χ
8 7 abbii y|yxψyxχ=y|yx|ψyx|χ
9 sbequ y=zyxψzxψ
10 sbequ y=zyxχzxχ
11 9 10 anbi12d y=zyxψyxχzxψzxχ
12 11 sbievw zyyxψyxχzxψzxχ
13 ax-1 zxψzxχzxψ
14 13 a1i φzxψzxχzxψ
15 14 impd φzxψzxχzxψ
16 1 sbimdv φzxψzxχ
17 16 ancld φzxψzxψzxχ
18 15 17 impbid φzxψzxχzxψ
19 12 18 bitrid φzyyxψyxχzxψ
20 df-clab zy|yxψyxχzyyxψyxχ
21 df-clab zx|ψzxψ
22 19 20 21 3bitr4g φzy|yxψyxχzx|ψ
23 22 eqrdv φy|yxψyxχ=x|ψ
24 8 23 eqtr3id φy|yx|ψyx|χ=x|ψ
25 2 24 eqtrid φx|ψx|χ=x|ψ
26 df-ss x|ψx|χx|ψx|χ=x|ψ
27 25 26 sylibr φx|ψx|χ