Metamath Proof Explorer


Definition df-in

Description: Define the intersection of two classes. Definition 5.6 of TakeutiZaring p. 16. For example, ( { 1 , 3 } i^i { 1 , 8 } ) = { 1 } ( ex-in ). Contrast this operation with union ( A u. B ) ( df-un ) and difference ( A \ B ) ( df-dif ). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 and dfin4 . For intersection defined in terms of union, see dfin3 . (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion df-in AB=x|xAxB

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 cB classB
2 0 1 cin classAB
3 vx setvarx
4 3 cv setvarx
5 4 0 wcel wffxA
6 4 1 wcel wffxB
7 5 6 wa wffxAxB
8 7 3 cab classx|xAxB
9 2 8 wceq wffAB=x|xAxB