Step |
Hyp |
Ref |
Expression |
1 |
|
ss2abdv.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
df-in |
⊢ ( { 𝑥 ∣ 𝜓 } ∩ { 𝑥 ∣ 𝜒 } ) = { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) } |
3 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) |
4 |
3
|
bicomi |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) |
5 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 ) |
6 |
5
|
bicomi |
⊢ ( [ 𝑦 / 𝑥 ] 𝜒 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) |
7 |
4 6
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ) |
8 |
7
|
abbii |
⊢ { 𝑦 ∣ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) } = { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) } |
9 |
|
sbequ |
⊢ ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑧 / 𝑥 ] 𝜓 ) ) |
10 |
|
sbequ |
⊢ ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜒 ↔ [ 𝑧 / 𝑥 ] 𝜒 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜒 ) ) ) |
12 |
11
|
sbievw |
⊢ ( [ 𝑧 / 𝑦 ] ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜒 ) ) |
13 |
|
ax-1 |
⊢ ( [ 𝑧 / 𝑥 ] 𝜓 → ( [ 𝑧 / 𝑥 ] 𝜒 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑥 ] 𝜓 → ( [ 𝑧 / 𝑥 ] 𝜒 → [ 𝑧 / 𝑥 ] 𝜓 ) ) ) |
15 |
14
|
impd |
⊢ ( 𝜑 → ( ( [ 𝑧 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜒 ) → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
16 |
1
|
sbimdv |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑧 / 𝑥 ] 𝜒 ) ) |
17 |
16
|
ancld |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑥 ] 𝜓 → ( [ 𝑧 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜒 ) ) ) |
18 |
15 17
|
impbid |
⊢ ( 𝜑 → ( ( [ 𝑧 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜒 ) ↔ [ 𝑧 / 𝑥 ] 𝜓 ) ) |
19 |
12 18
|
syl5bb |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑦 ] ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ [ 𝑧 / 𝑥 ] 𝜓 ) ) |
20 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) } ↔ [ 𝑧 / 𝑦 ] ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
21 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑧 / 𝑥 ] 𝜓 ) |
22 |
19 20 21
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑧 ∈ { 𝑦 ∣ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) } ↔ 𝑧 ∈ { 𝑥 ∣ 𝜓 } ) ) |
23 |
22
|
eqrdv |
⊢ ( 𝜑 → { 𝑦 ∣ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) } = { 𝑥 ∣ 𝜓 } ) |
24 |
8 23
|
eqtr3id |
⊢ ( 𝜑 → { 𝑦 ∣ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) } = { 𝑥 ∣ 𝜓 } ) |
25 |
2 24
|
eqtrid |
⊢ ( 𝜑 → ( { 𝑥 ∣ 𝜓 } ∩ { 𝑥 ∣ 𝜒 } ) = { 𝑥 ∣ 𝜓 } ) |
26 |
|
df-ss |
⊢ ( { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝜒 } ↔ ( { 𝑥 ∣ 𝜓 } ∩ { 𝑥 ∣ 𝜒 } ) = { 𝑥 ∣ 𝜓 } ) |
27 |
25 26
|
sylibr |
⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ { 𝑥 ∣ 𝜒 } ) |