Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqrdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
Assertion | eqrdv | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
3 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
4 | 2 3 | sylibr | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |