Description: Deduce equality of classes from equivalence of membership. (Contributed by NM, 17-Mar-1996)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqrdv.1 | |- ( ph -> ( x e. A <-> x e. B ) ) |
|
Assertion | eqrdv | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrdv.1 | |- ( ph -> ( x e. A <-> x e. B ) ) |
|
2 | 1 | alrimiv | |- ( ph -> A. x ( x e. A <-> x e. B ) ) |
3 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
4 | 2 3 | sylibr | |- ( ph -> A = B ) |