| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqrdav.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐶 ) |
| 2 |
|
eqrdav.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐶 ) |
| 3 |
|
eqrdav.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 4 |
3
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 5 |
4
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵 ) ) |
| 6 |
1 5
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 7 |
3
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴 ) ) |
| 8 |
7
|
impancom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) ) |
| 9 |
2 8
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 10 |
6 9
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 11 |
10
|
eqrdv |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |