Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | addclprlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addclprlem1 | |
|
2 | 1 | adantlr | |
3 | addclprlem1 | |
|
4 | addcomnq | |
|
5 | 4 | breq2i | |
6 | 4 | fveq2i | |
7 | 6 | oveq2i | |
8 | 7 | oveq1i | |
9 | 8 | eleq1i | |
10 | 3 5 9 | 3imtr4g | |
11 | 10 | adantll | |
12 | 2 11 | jcad | |
13 | simpl | |
|
14 | simpl | |
|
15 | simpl | |
|
16 | 14 15 | anim12i | |
17 | df-plp | |
|
18 | addclnq | |
|
19 | 17 18 | genpprecl | |
20 | 13 16 19 | 3syl | |
21 | 12 20 | syld | |
22 | distrnq | |
|
23 | mulassnq | |
|
24 | 22 23 | eqtr3i | |
25 | mulcomnq | |
|
26 | elprnq | |
|
27 | elprnq | |
|
28 | 26 27 | anim12i | |
29 | addclnq | |
|
30 | recidnq | |
|
31 | 28 29 30 | 3syl | |
32 | 25 31 | eqtrid | |
33 | 32 | oveq2d | |
34 | mulidnq | |
|
35 | 33 34 | sylan9eq | |
36 | 24 35 | eqtrid | |
37 | 36 | eleq1d | |
38 | 21 37 | sylibd | |