Metamath Proof Explorer


Theorem addclprlem2

Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of Gleason p. 123. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addclprlem2 A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hxA+𝑷B

Proof

Step Hyp Ref Expression
1 addclprlem1 A𝑷gAx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸gA
2 1 adantlr A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸gA
3 addclprlem1 B𝑷hBx𝑸x<𝑸h+𝑸gx𝑸*𝑸h+𝑸g𝑸hB
4 addcomnq g+𝑸h=h+𝑸g
5 4 breq2i x<𝑸g+𝑸hx<𝑸h+𝑸g
6 4 fveq2i *𝑸g+𝑸h=*𝑸h+𝑸g
7 6 oveq2i x𝑸*𝑸g+𝑸h=x𝑸*𝑸h+𝑸g
8 7 oveq1i x𝑸*𝑸g+𝑸h𝑸h=x𝑸*𝑸h+𝑸g𝑸h
9 8 eleq1i x𝑸*𝑸g+𝑸h𝑸hBx𝑸*𝑸h+𝑸g𝑸hB
10 3 5 9 3imtr4g B𝑷hBx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸hB
11 10 adantll A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸hB
12 2 11 jcad A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸gAx𝑸*𝑸g+𝑸h𝑸hB
13 simpl A𝑷gAB𝑷hBx𝑸A𝑷gAB𝑷hB
14 simpl A𝑷gAA𝑷
15 simpl B𝑷hBB𝑷
16 14 15 anim12i A𝑷gAB𝑷hBA𝑷B𝑷
17 df-plp +𝑷=w𝑷,v𝑷x|ywzvx=y+𝑸z
18 addclnq y𝑸z𝑸y+𝑸z𝑸
19 17 18 genpprecl A𝑷B𝑷x𝑸*𝑸g+𝑸h𝑸gAx𝑸*𝑸g+𝑸h𝑸hBx𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸hA+𝑷B
20 13 16 19 3syl A𝑷gAB𝑷hBx𝑸x𝑸*𝑸g+𝑸h𝑸gAx𝑸*𝑸g+𝑸h𝑸hBx𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸hA+𝑷B
21 12 20 syld A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hx𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸hA+𝑷B
22 distrnq x𝑸*𝑸g+𝑸h𝑸g+𝑸h=x𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸h
23 mulassnq x𝑸*𝑸g+𝑸h𝑸g+𝑸h=x𝑸*𝑸g+𝑸h𝑸g+𝑸h
24 22 23 eqtr3i x𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸h=x𝑸*𝑸g+𝑸h𝑸g+𝑸h
25 mulcomnq *𝑸g+𝑸h𝑸g+𝑸h=g+𝑸h𝑸*𝑸g+𝑸h
26 elprnq A𝑷gAg𝑸
27 elprnq B𝑷hBh𝑸
28 26 27 anim12i A𝑷gAB𝑷hBg𝑸h𝑸
29 addclnq g𝑸h𝑸g+𝑸h𝑸
30 recidnq g+𝑸h𝑸g+𝑸h𝑸*𝑸g+𝑸h=1𝑸
31 28 29 30 3syl A𝑷gAB𝑷hBg+𝑸h𝑸*𝑸g+𝑸h=1𝑸
32 25 31 eqtrid A𝑷gAB𝑷hB*𝑸g+𝑸h𝑸g+𝑸h=1𝑸
33 32 oveq2d A𝑷gAB𝑷hBx𝑸*𝑸g+𝑸h𝑸g+𝑸h=x𝑸1𝑸
34 mulidnq x𝑸x𝑸1𝑸=x
35 33 34 sylan9eq A𝑷gAB𝑷hBx𝑸x𝑸*𝑸g+𝑸h𝑸g+𝑸h=x
36 24 35 eqtrid A𝑷gAB𝑷hBx𝑸x𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸h=x
37 36 eleq1d A𝑷gAB𝑷hBx𝑸x𝑸*𝑸g+𝑸h𝑸g+𝑸x𝑸*𝑸g+𝑸h𝑸hA+𝑷BxA+𝑷B
38 21 37 sylibd A𝑷gAB𝑷hBx𝑸x<𝑸g+𝑸hxA+𝑷B