Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
eleq1i
Next ⟩
eleq2i
Metamath Proof Explorer
Ascii
Unicode
Theorem
eleq1i
Description:
Inference from equality to equivalence of membership.
(Contributed by
NM
, 21-Jun-1993)
Ref
Expression
Hypothesis
eleq1i.1
⊢
A
=
B
Assertion
eleq1i
⊢
A
∈
C
↔
B
∈
C
Proof
Step
Hyp
Ref
Expression
1
eleq1i.1
⊢
A
=
B
2
eleq1
⊢
A
=
B
→
A
∈
C
↔
B
∈
C
3
1
2
ax-mp
⊢
A
∈
C
↔
B
∈
C