| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addclprlem1 | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴 ) ) | 
						
							| 2 | 1 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴 ) ) | 
						
							| 3 |  | addclprlem1 | ⊢ ( ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( ℎ  +Q  𝑔 )  →  ( ( 𝑥  ·Q  ( *Q ‘ ( ℎ  +Q  𝑔 ) ) )  ·Q  ℎ )  ∈  𝐵 ) ) | 
						
							| 4 |  | addcomnq | ⊢ ( 𝑔  +Q  ℎ )  =  ( ℎ  +Q  𝑔 ) | 
						
							| 5 | 4 | breq2i | ⊢ ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  ↔  𝑥  <Q  ( ℎ  +Q  𝑔 ) ) | 
						
							| 6 | 4 | fveq2i | ⊢ ( *Q ‘ ( 𝑔  +Q  ℎ ) )  =  ( *Q ‘ ( ℎ  +Q  𝑔 ) ) | 
						
							| 7 | 6 | oveq2i | ⊢ ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  =  ( 𝑥  ·Q  ( *Q ‘ ( ℎ  +Q  𝑔 ) ) ) | 
						
							| 8 | 7 | oveq1i | ⊢ ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  =  ( ( 𝑥  ·Q  ( *Q ‘ ( ℎ  +Q  𝑔 ) ) )  ·Q  ℎ ) | 
						
							| 9 | 8 | eleq1i | ⊢ ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  ∈  𝐵  ↔  ( ( 𝑥  ·Q  ( *Q ‘ ( ℎ  +Q  𝑔 ) ) )  ·Q  ℎ )  ∈  𝐵 ) | 
						
							| 10 | 3 5 9 | 3imtr4g | ⊢ ( ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  ∈  𝐵 ) ) | 
						
							| 11 | 10 | adantll | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  ∈  𝐵 ) ) | 
						
							| 12 | 2 11 | jcad | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴  ∧  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  ∈  𝐵 ) ) ) | 
						
							| 13 |  | simpl | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  𝐴  ∈  P ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  →  𝐵  ∈  P ) | 
						
							| 16 | 14 15 | anim12i | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝐴  ∈  P  ∧  𝐵  ∈  P ) ) | 
						
							| 17 |  | df-plp | ⊢  +P   =  ( 𝑤  ∈  P ,  𝑣  ∈  P  ↦  { 𝑥  ∣  ∃ 𝑦  ∈  𝑤 ∃ 𝑧  ∈  𝑣 𝑥  =  ( 𝑦  +Q  𝑧 ) } ) | 
						
							| 18 |  | addclnq | ⊢ ( ( 𝑦  ∈  Q  ∧  𝑧  ∈  Q )  →  ( 𝑦  +Q  𝑧 )  ∈  Q ) | 
						
							| 19 | 17 18 | genpprecl | ⊢ ( ( 𝐴  ∈  P  ∧  𝐵  ∈  P )  →  ( ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴  ∧  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  ∈  𝐵 )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) )  ∈  ( 𝐴  +P  𝐵 ) ) ) | 
						
							| 20 | 13 16 19 | 3syl | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  ∈  𝐴  ∧  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ )  ∈  𝐵 )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) )  ∈  ( 𝐴  +P  𝐵 ) ) ) | 
						
							| 21 | 12 20 | syld | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) )  ∈  ( 𝐴  +P  𝐵 ) ) ) | 
						
							| 22 |  | distrnq | ⊢ ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ( 𝑔  +Q  ℎ ) )  =  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) ) | 
						
							| 23 |  | mulassnq | ⊢ ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ( 𝑔  +Q  ℎ ) )  =  ( 𝑥  ·Q  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  ·Q  ( 𝑔  +Q  ℎ ) ) ) | 
						
							| 24 | 22 23 | eqtr3i | ⊢ ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) )  =  ( 𝑥  ·Q  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  ·Q  ( 𝑔  +Q  ℎ ) ) ) | 
						
							| 25 |  | mulcomnq | ⊢ ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  ·Q  ( 𝑔  +Q  ℎ ) )  =  ( ( 𝑔  +Q  ℎ )  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) ) | 
						
							| 26 |  | elprnq | ⊢ ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  →  𝑔  ∈  Q ) | 
						
							| 27 |  | elprnq | ⊢ ( ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 )  →  ℎ  ∈  Q ) | 
						
							| 28 | 26 27 | anim12i | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q ) ) | 
						
							| 29 |  | addclnq | ⊢ ( ( 𝑔  ∈  Q  ∧  ℎ  ∈  Q )  →  ( 𝑔  +Q  ℎ )  ∈  Q ) | 
						
							| 30 |  | recidnq | ⊢ ( ( 𝑔  +Q  ℎ )  ∈  Q  →  ( ( 𝑔  +Q  ℎ )  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  =  1Q ) | 
						
							| 31 | 28 29 30 | 3syl | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( 𝑔  +Q  ℎ )  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  =  1Q ) | 
						
							| 32 | 25 31 | eqtrid | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  ·Q  ( 𝑔  +Q  ℎ ) )  =  1Q ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  →  ( 𝑥  ·Q  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  ·Q  ( 𝑔  +Q  ℎ ) ) )  =  ( 𝑥  ·Q  1Q ) ) | 
						
							| 34 |  | mulidnq | ⊢ ( 𝑥  ∈  Q  →  ( 𝑥  ·Q  1Q )  =  𝑥 ) | 
						
							| 35 | 33 34 | sylan9eq | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  ·Q  ( ( *Q ‘ ( 𝑔  +Q  ℎ ) )  ·Q  ( 𝑔  +Q  ℎ ) ) )  =  𝑥 ) | 
						
							| 36 | 24 35 | eqtrid | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) )  =  𝑥 ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( ( ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  𝑔 )  +Q  ( ( 𝑥  ·Q  ( *Q ‘ ( 𝑔  +Q  ℎ ) ) )  ·Q  ℎ ) )  ∈  ( 𝐴  +P  𝐵 )  ↔  𝑥  ∈  ( 𝐴  +P  𝐵 ) ) ) | 
						
							| 38 | 21 37 | sylibd | ⊢ ( ( ( ( 𝐴  ∈  P  ∧  𝑔  ∈  𝐴 )  ∧  ( 𝐵  ∈  P  ∧  ℎ  ∈  𝐵 ) )  ∧  𝑥  ∈  Q )  →  ( 𝑥  <Q  ( 𝑔  +Q  ℎ )  →  𝑥  ∈  ( 𝐴  +P  𝐵 ) ) ) |