Metamath Proof Explorer


Theorem 3syl

Description: Inference chaining two syllogisms syl . Inference associated with imim12i . (Contributed by NM, 28-Dec-1992)

Ref Expression
Hypotheses 3syl.1 ( 𝜑𝜓 )
3syl.2 ( 𝜓𝜒 )
3syl.3 ( 𝜒𝜃 )
Assertion 3syl ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 3syl.1 ( 𝜑𝜓 )
2 3syl.2 ( 𝜓𝜒 )
3 3syl.3 ( 𝜒𝜃 )
4 1 2 syl ( 𝜑𝜒 )
5 4 3 syl ( 𝜑𝜃 )