Metamath Proof Explorer


Theorem 3syl

Description: Inference chaining two syllogisms syl . Inference associated with imim12i . (Contributed by NM, 28-Dec-1992)

Ref Expression
Hypotheses 3syl.1
|- ( ph -> ps )
3syl.2
|- ( ps -> ch )
3syl.3
|- ( ch -> th )
Assertion 3syl
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 3syl.1
 |-  ( ph -> ps )
2 3syl.2
 |-  ( ps -> ch )
3 3syl.3
 |-  ( ch -> th )
4 1 2 syl
 |-  ( ph -> ch )
5 4 3 syl
 |-  ( ph -> th )